147 research outputs found

    Effects of vessel traffic on relative abundance and behaviour of cetaceans : the case of the bottlenose dolphins in the Archipelago de La Maddalena, north-western Mediterranean sea

    Get PDF
    Acknowledgements This study was part of the Tursiops Project of the Dolphin Research Centre of Caprera, La Maddalena. Financial and logistical support was provided by the Centro Turistico Studentesco (CTS) and by the National Park of the Archipelago de La Maddalena. We thank the Natural Reserve of Bocche di Bonifacio for the support provided during data collection. The authors thank the numerous volunteers of the Caprera Dolphin Research Centre and especially Marco Ferraro, Mirko Ugo, Angela Pira and Maurizio Piras whose assistance during field observation and skills as a boat driver were invaluable.Peer reviewedPostprin

    Animal cultures matter for conservation

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this record.No abstrac

    Monitoring Winter and Summer Abundance of Cetaceans in the Pelagos Sanctuary (Northwestern Mediterranean Sea) Through Aerial Surveys

    Get PDF
    Systematic long-term monitoring of abundance is essential to inform conservation measures and evaluate their effectiveness. To instigate such work in the Pelagos Sanctuary in the Mediterranean, two aerial surveys were conducted in winter and summer 2009. A total of 467 (131 in winter, 336 in summer) sightings of 7 species was made. Sample sizes were sufficient to estimate abundance of fin whales in summer (148; 95% CI = 87–254) and striped dolphins in winter (19,462; 95% CI = 12 939–29 273) and in summer (38 488; 95% CI = 27 447–53 968). Numbers of animals within the Sanctuary are significantly higher in summer, when human activities and thus potential population level impacts are highest. Comparisons with data from past shipboard surveys suggest an appreciable decrease in fin whales within the Sanctuary area and an appreciable increase in striped dolphins. Aerial surveys proved to be more efficient than ship surveys, allowing more robust estimates, with smaller CIs and CVs. These results provide essential baseline data for this marine protected area and continued regular surveys will allow the effectiveness of the MPA in terms of cetacean conservation to be evaluated and inform future management measures. The collected data may also be crucial in assessing whether ship strikes, one of the main causes of death for fin whales in the Mediterranean, are affecting the Mediterranean population

    The Science of Marine Protected Areas (3rd edition, Mediterranean)

    Get PDF
    The main purpose of the booklet is to present the latest scientific information about the effects of MPAs in the Mediterranean in order to inform current management dialogues. This is particularly relevant given the increasing legislative frameworks and political initiatives to implement networks of MPAs in countries across the Mediterranean Sea. Importantly, this Edition does much more than simply tailor the earlier content for the Mediterranean region. The edition update the basic content of the booklet, drawing on the wealth of new published scientific literature, highlighting case studies from the Mediterranean Sea

    Estimating Trends of Population Decline in Long-Lived Marine Species in the Mediterranean Sea Based on Fishers' Perceptions

    Get PDF
    We conducted interviews of a representative sample of 106 retired fishers in Italy, Spain and Greece, asking specific questions about the trends they perceived in dolphin and shark abundances between 1940 and 1999 (in three 20 year periods) compared to the present abundance. The large marine fauna studied were not target species of the commercial fleet segment interviewed (trawl fishery). The fishers were asked to rank the perceived abundance in each period into qualitative ordinal classes based on two indicators: frequency of sightings and frequency of catches (incidental or intentional) of each taxonomic group. The statistical analysis of the survey results showed that both incidental catches and the sighting frequency of dolphins have decreased significantly over the 60+ years of the study period (except for in Greece due to the recent population increase). This shows that fishers' perceptions are in agreement with the declining population trends detected by scientists. Shark catches were also perceived to have diminished since the early 1940s for all species. Other long-lived Mediterranean marine fauna (monk seals, whales) were at very low levels in the second half of the 20th century and no quantitative data could be obtained. Our study supports the results obtained in the Mediterranean and other seas that show the rapid disappearance (over a few decades) of marine fauna. We show that appropriately designed questionnaires help provide a picture of animal abundance in the past through the valuable perceptions of fishers. This information can be used to complement scientific sources or in some cases be taken as the only information source for establishing population trends in the abundance of sensitive species

    The challenge of habitat modelling for threatened low density species using heterogeneous data : the case of Cuvier’s beaked whales in the Mediterranean

    Get PDF
    We are grateful to the ACCOBAMS Secretariat for their support in this work, including a small grant for the analysis.The Mediterranean population of Cuvieŕs beaked whale (Ziphius cavirostris), a deep-diving cetacean, is genetically distinct from the Atlantic, and subject to a number of conservation threats, in particular underwater noise. It is also cryptic at the surface and relatively rare, so obtain robust knowledge on distribution and abundance presents unique challenges. Here we use multiplatform and multiyear survey data to analyse the distribution and abundance of this species across the Mediterranean Sea. We use a novel approach combining heterogeneous data gathered with different methods to obtain a single density index for the region. A total of 594,996 km of survey effort and 507 sightings of Cuvier’s beaked whales, from 1990 to 2016, were pooled together from 24 different sources. Data were divided into twelve major groups according to platform height, speed and sea state. Both availability bias and effective strip width were calculated from the sightings with available perpendicular distance data. This was extrapolated to the rest of the sightings for each of the twelve groups. Habitat preference models were fitted into a GAM framework using counts of groups as a response variable with the effective searched area as an offset. Depth, coefficient of variation of depth, longitude and marine regions (as defined by the International Hydrographic Organization) were identified as important predictors. Predicted abundance of groups per grid cell were multiplied by mean group size to obtain a prediction of the abundance of animals. A total abundance of 5799 (CV = 24.0%) animals was estimated for the whole Mediterranean basin. The Alborán Sea, Ligurian Sea, Hellenic Trench, southern Adriatic Sea and eastern Ionian Sea were identified as being the main hot spots in the region. It is important to urge that the relevant stakeholders incorporate this information in the planning and execution of high risk activities in these high-risk areas.PostprintPeer reviewe

    Beaked whales respond to simulated and actual navy sonar

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain declaration. The definitive version was published in PLoS One 6 (2011): e17009, doi:10.1371/journal.pone.0017009.Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.The research reported here was financially supported by the United States (U.S.) Office of Naval Research (www.onr.navy.mil) Grants N00014-07-10988, N00014-07-11023, N00014-08-10990; the U.S. Strategic Environmental Research and Development Program (www.serdp.org) Grant SI-1539, the Environmental Readiness Division of the U.S. Navy (http://www.navy.mil/local/n45/), the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), the U.S. National Oceanic and Atmospheric Administration (National Marine Fisheries Service, Office of Science and Technology) (http://www.st.nmfs.noaa.gov/), U.S. National Oceanic and Atmospheric Administration Ocean Acoustics Program (http://www.nmfs.noaa.gov/pr/acoustics/), and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers (www.soundandmarinelife.org)

    Sometimes Sperm Whales (Physeter macrocephalus) Cannot Find Their Way Back to the High Seas: A Multidisciplinary Study on a Mass Stranding

    Get PDF
    BACKGROUND: Mass strandings of sperm whales (Physeter macrocephalus) remain peculiar and rather unexplained events, which rarely occur in the Mediterranean Sea. Solar cycles and related changes in the geomagnetic field, variations in water temperature and weather conditions, coast geographical features and human activities have been proposed as possible causes. In December 2009, a pod of seven male sperm whales stranded along the Adriatic coast of Southern Italy. This is the sixth instance from 1555 in this basin. METHODOLOGY/PRINCIPAL FINDINGS: Complete necropsies were performed on three whales whose bodies were in good condition, carrying out on sampled tissues histopathology, virology, bacteriology, parasitology, and screening of veins looking for gas emboli. Furthermore, samples for age determination, genetic studies, gastric content evaluation, stable isotopes and toxicology were taken from all the seven specimens. The animals were part of the same group and determined by genetic and photo-identification to be part of the Mediterranean population. Causes of death did not include biological agents, or the "gas and fat embolic syndrome", associated with direct sonar exposure. Environmental pollutant tissue concentrations were relatively high, in particular organochlorinated xenobiotics. Gastric content and morphologic tissue examinations showed a prolonged starvation, which likely caused, at its turn, the mobilization of lipophilic contaminants from the adipose tissue. Chemical compounds subsequently entered the blood circulation and may have impaired immune and nervous functions. CONCLUSIONS/SIGNIFICANCE: A multi-factorial cause underlying this sperm whales' mass stranding is proposed herein based upon the results of postmortem investigations as well as of the detailed analyses of the geographical and historical background. The seven sperm whales took the same "wrong way" into the Adriatic Sea, a potentially dangerous trap for Mediterranean sperm whales. Seismic surveys should be also regarded as potential co-factors, even if no evidence of direct impact has been detected
    corecore